基于 RK3588 的 YOLO 多线程推理多级硬件加速引擎框架设计(项目总览和加速效果)
plmm烟酒僧:
编译时和运行时的库要保持一致。要么删除系统的库,要么cmake中添加rpath,这个优先级高于默认的系统路径。
基于 RK3588 的 YOLO 多线程推理多级硬件加速引擎框架设计(项目总览和加速效果)
iiyuui:
修改了CMakelists中的路径指向重新编译的ffmpeg,但ldd映射显示同时加载了系统ffmpeg库和自己编译的ffmpeg库,会是这个导致的错误吗?
libavcodec.so.60 => /home/orangepi/multi_threads/YOLO_RKNN_Acceleration_Program/lib/ffmpeg/libavcodec.so.60 (0x0000007fb0720000)
libavformat.so.60 => /home/orangepi/multi_threads/YOLO_RKNN_Acceleration_Program/lib/ffmpeg/libavformat.so.60 (0x0000007fb04a0000)
libavutil.so.58 => /home/orangepi/multi_threads/YOLO_RKNN_Acceleration_Program/lib/ffmpeg/libavutil.so.58 (0x0000007faf3c0000)
libswscale.so.7 => /home/orangepi/multi_threads/YOLO_RKNN_Acceleration_Program/lib/ffmpeg/libswscale.so.7 (0x0000007faf340000)
libswresample.so.4 => not found
libavcodec.so.58 => /lib/aarch64-linux-gnu/libavcodec.so.58 (0x0000007fac210000)
libavformat.so.58 => /lib/aarch64-linux-gnu/libavformat.so.58 (0x0000007fabf60000)
libavutil.so.56 => /lib/aarch64-linux-gnu/libavutil.so.56 (0x0000007fabc90000)
libswscale.so.5 => /lib/aarch64-linux-gnu/libswscale.so.5 (0
RK3588 Mali G610驱动固件加载失败
J3467965:
添加PPA时报404了大佬
基于 RK3588 的 YOLO 多线程推理多级硬件加速引擎框架设计(项目总览和加速效果)
plmm烟酒僧:
先看是rga的问题还是ffmpeg的问题。如果是ffmpeg,大概率是版本兼容性或者编译的不正确;如果是rga,可能需要更新rga部分的内核代码和库。
基于 RK3588 的 YOLO 多线程推理多级硬件加速引擎框架设计(项目总览和加速效果)
iiyuui:
您好,再次打扰了,采用方案1/3可以正常运行,但是一旦采用硬解码会出现core dumped这个问题您有遇到过吗?以下是输出日志
Parse Information:
Model path: ./model/RK3588/yolov5s-640-640.rknn
Input source: /home/orangepi/multi_threads/detect/720p60hz.mp4
Threads: 2
Opencl: false
Decodec: h264_rkmpp
Screen fps: true
Console fps: false
Accels_2d: RGA
Read engine: ffmpeg
FFmpeg version: 04f5eaa11c
sdk version: 2.3.0 (c949ad889d@2024-11-07T11:35:33) driver version: 0.9.6
model input num: 1, output num: 3
model input fmt is NHWC
model input height=640, width=640, channel=3
Failed to receive frame from decoder
Failed to receive frame from decoder
Failed to receive frame from decoder
Failed to receive frame from decoder
./detect.sh: line 36: 61067 Segmentation fault (core dumped) ./build/yolo_cpp_multi -m $model_path -i $video_path -t $threads -r $read_engine -s -v -a $accels -c $opencl